Гексоген: формула, как выглядит, аналог, из чего делают

На протяжении почти всей истории цивилизации люди искали наиболее эффектные взрывчатые вещества — чтобы использовать их не только в военных, но и в мирных целях (в производстве, строительстве и для развлечения). Знаменитый автор спецэффектов ко многим фильмам и «разрушитель легенд» Адам Сэвидж, разумеется, тоже не смог обойти эту тему.

В своем новом телевизионном проекте «Дикие эксперименты Адама Сэвиджа», который идет на Discovery Channel по вторникам в 22:00 Адам собирает всевозможные устройства от машин из «Безумного Макса» до пушки, стреляющей хот-догами, и добивается их работоспособности, а один из выпусков программы будет посвящен нитроглицерину. Вместе с Александром Ивановым, младшим научным сотрудником Физтеха УрФУ, автором проекта «Химия — Просто», мы решили разобраться в истории взрывчатки и эволюции этих гремучих смесей.

Греческий огонь

Одной из первых горючих смесей, которую открыло для себя человечество, стал греческий огонь. В историографии его изобретение относят к середине VII века нашей эры, а родиной называют Византию. Предполагается, что это была смесь смолы, серы, вероятно, сырой нефти и прочих горючих и липких веществ.

Эта смесь помещалась в глиняный горшок, поджигалась и забрасывалась на вражеский корабль. Там она растекалась и уничтожала судно: потушить такое не представлялось возможным, поэтому для корабля зачастую подобные атаки становились фатальными.

Греческий огонь очень похож на дикий огонь из сериала «Игра престолов», с помощью которого потопили флот Станиса, а потом Серсея взорвала септу с фанатиками. Строго говоря, греческий огонь нельзя причислить к взрывчатке, поскольку, выражаясь современным языком, это был просто своеобразный коктейль Молотова, а взрывчатка — это то, что умеет детонировать.

Однако в реалиях раннего средневековья зажигательная смесь, способная взрываться при соприкосновении с другими объектами, могла быть отнесена к первым попыткам человечества изобрести взрывчатку.

Гексоген: формула, как выглядит, аналог, из чего делают Греческий огонь

Дымный порох

Исторически первым метательным взрывчатым веществом считается дымный порох. По утвердившейся в историографии версии, он был открыт в Китае в конце VII века нашей эры.

Есть легенда, что черный порох был изобретен случайно: в одной пещере были залежи селитры, и кто-то забыл там бумагу — как следует пропитавшись этим веществом, она затем очень быстро загорелась.

Вскоре появились и самодельные взрывные устройства, представляющие собой глиняные горшки, начиненные порохом и кусками металла. Приводились они в действие путем поджога соединенной с ними пропитанной серой веревки, уложенной в бамбуковые палочки.

В Европе черный порох был переизобретен немецким монахом Бертольдом Шварцем — опять же, по легенде, поскольку реальное существование Шварца ставится исследователями под сомнение.

Монах смешал в ступке серу, селитру и уголь, пестиком начал измельчать эту смесь, но раздался взрыв, сопровождавшийся яркой вспышкой, опалившей монаху бороду. Это всё натолкнуло Шварца на идею использовать получившуюся смесь в качестве метательного оружия.

Сразу же встал вопрос, как сохранить секрет этой смеси: по преданию, Шварца посадили на бочку с его изобретением и взорвали, чтобы он не открыл тайну посторонним людям.

Гексоген: формула, как выглядит, аналог, из чего делают Дымный порох

На протяжении долгих веков порох оставался практически единственным взрывчатым веществом в арсенале человечества.

Он прост в изготовлении: всё, что нужно, — это мельница, хороший помол компонентов и гранулирование под определённый калибр.

Порох засыпали в дуло, затем клали кусок свинца, а сзади дула был фитиль либо кремень, который создавал огонь или искры. Все гениальное действительно просто.

Пикриновая кислота

Следующим шагом в развитии взрывчатых веществ стало открытие пикриновой кислоты: в 1771 году ирландский химик Питер Вульф получил тринитрофенол, воздействуя азотной кислотой на природный краситель индиго.

Долгое время тринитрофенол использовался как краситель для шерсти и шёлка — он давал желтый цвет — и вообще не ассоциировался с взрывчаткой, пока в 1873 году не была продемонстрирована способность тринитрофенола к детонации.

Наибольший вклад в «милитаризацию» пикриновой кислоты сделал французский инженер Тюрпен, который в 1886 году обнаружил, что тринитрофенол может детонировать, если его сплавить или сильно спрессовать — значит, его можно использовать в качестве боеприпасов. После этого тринитрофенол начали широко применять как мощное бризантное взрывчатое вещество.

Гексоген: формула, как выглядит, аналог, из чего делают Пикриновая кислота

Хлоратный порох

Несмотря на то, что черный порох показал себя как эффективное взрывчатое вещество, ученые во всем мире не оставляли попыток улучшить его. Так, в 1786 году во Франции появился хлоратный порох, состоящий из хлората калия, серы и угля.

Его открытие принадлежит Клоду Бертолле, поэтому и хлорат калия впоследствии был назван бертоллетовой солью. Хлоратный порох был, конечно, мощнее тем, что скорость его горения гораздо выше, чем у черного пороха, но он очень чувствителен к давлению: чем оно выше, тем выше скорость горения.

Тонкость заключается в том, что снаряд можно разогнать резко, а можно и спокойнее. Классический черный порох делает это плавно за счёт стабильного горения. То есть гранулы должны гореть пока, грубо говоря, нос снаряда не покажется из ствола пушки.

С хлоратным порохом снаряд не успевает пройти и полпути, а реакция уже идет полным ходом. Поэтому получается ударный эффект — от него часто взрывались стволы пушек и гибли артиллеристы.

Гексоген: формула, как выглядит, аналог, из чего делают

Гремучее серебро

Конец XVIII века добавил в оружейную палату человечества еще одно взрывчатое вещество — «гремучее серебро». Серебряную соль фульминовой кислоты AgCNO открыл британский химик Эдвард Ховард в ходе исследовательского проекта по получению самых разных фульминатов.

«Гремучее серебро» обладает высокой мощностью, однако его использование ограничено из-за его чрезвычайной чувствительности к ударам, нагреву, давлению и электричеству.

Взрыв может вызвать даже легкое прикосновение пера, падение одной капли воды или небольшой статический разряд.

Агрегирование больших количеств фульмината серебра невозможно из-за тенденции к самодетонации соединения под действием собственного веса, поэтому в истории гремучее серебро не получило широкого применения, а сегодня используется в развлекательных целях.

Изобретение пироксилина (тринитроцеллюлозы) в чем-то похоже на историю с пикриновой кислотой: впервые это вещество получил в 1832 году французский ученый А. Браконно, однако тщательно изучить его свойства он почему-то не посчитал нужным, и взрывчатый потенциал пироксилина тогда оказался не раскрыт.

Зато в 1846—1848 гг. российский академик Г. И. Гесс и полковник А. А.

Фадеев, вплотную занявшиеся исследованием пироксилина, обнаружили, что его мощность в разы превосходит дымный порох — неслучайно название этого соединения переводится как «огонь» и «срубленный лес», то есть, метафорически выражаясь, пламя, способное уничтожить целый лес.

Безопасный способ производства одной из разновидностей пироксилина был предложен Д.И. Менделеевым в 1890 году: свое изобретение химик назвал пироколлодийным порохом, а в состав его входили хорошо растворимая нитроклетчатка, непосредственно растворитель и различные присадки для стабилизации газообразования.

Гексоген: формула, как выглядит, аналог, из чего делают

Нитроглицерин

Сложный эфир глицерина и азотной кислоты впервые был синтезирован итальянским химиком Асканио Собреро в 1846 году, а представил свое открытие он год спустя под названием пироглицерин. Русское же название не совсем корректно, поскольку вещество относится к нитроэфирам, а не к нитросоединениям.

Нитроглицерин обладает высокой чувствительностью к ударам, трению, резкому нагреву, поэтому очень опасен в обращении. Кроме того, проникая в организм через кожу, он вызывает головную боль — так были открыты его фармакологические свойства.

На них впервые обратил внимание сам Собреро: он заметил, что при пробе на язык малых количеств нитроглицерина, у него начинается мигрень.

Поскольку в чистом виде нитроглицерин крайне неустойчив и опасен, ученые начали искать способ его стабилизации, и наибольших успехов в этой области достиг Альфред Нобель: в 1863 году он создал инжектор-смеситель для производства нитроглицерина и капсюль-детонатор.

Испытать на себе взрывоопасность и потенциал нитроглицерина берется Адам Сэвидж: в проекте «Дикие эксперименты Адама Сэвиджа», который выходит на Discovery Channel по вторникам в 22:00, знаменитый «разрушитель легенд» проведет серию смелых и красочных опытов, чтобы продемонстрировать зрителям всю сокрушительную мощь этого вещества.

Гексоген: формула, как выглядит, аналог, из чего делают Тротил

Тротил

Одно из самых известных сегодня взрывчатых веществ — тротил — было открыто в 1863 году в Германии Юлиусом Вильбрандом. Тринитротолуол отличается достаточной мощностью и при этом он не слишком чувствителен к внешним воздействиям, в отличие от того же самого «гремучего серебра».

Поэтому он и стал одним и самых популярных взрывчатых веществ: уже в 1891 году Германия наладила промышленное производство тротила, а с 1902 года в германской и американской армиях он вытеснил пикриновую кислоту и стал основным снарядом для боеприпасов.

Сегодня тротил остается одним из самых распространенных взрывчатых веществ и даже используется в качестве универсальной единицы вычисления мощности взрыва.

Динамит

Продолжая искать способы стабилизации нитроглицерина, один из самых известных химиков в мире, Альфред Нобель, пришел к выводу, что обезопасить его можно с помощью абсорбентов.

В 1867 году Нобель запатентовал динамит — взрывчатую смесь из твёрдых абсорбентов, пропитанных нитроглицерином и спрессованных в цилиндрическую форму. Смесь Нобель поместил в бумажную упаковку-патрон, а подрыв заряда предложил осуществлять с помощью капсюля-детонатора.

Нитроглицерин в такой форме было гораздо удобнее использовать и хранить, поэтому динамит быстро стал практически самой востребованной взрывчаткой на долгие десятилетия.

Примечательно, что журналисты, поверив ложным слухам о смерти Нобеля, выпустили некролог с заголовком «Торговец смертью мертв» — это настолько задело химика, что он решил начать работать не только над новыми изобретениями, но и над своей репутацией и впоследствии основал знаменитую премию, которую мы знаем как Нобелевскую.

Гексоген: формула, как выглядит, аналог, из чего делают Динамит

Аммиачная селитра

В 1867 году в Швеции случилось еще одного «взрывное» открытие: химики И. Норбин и И. Ольсен получили аммиачную селитру из безводного аммиака и концентрированной азотной кислоты. В чистом виде она уступает большинству известных взрывчатых веществ, но чем выше влажность и чем резче перепады температуры, тем взрывоопаснее она становится.

Наибольшую распространенность аммиачная селитра получила в горном деле, а в военной отрасли используются смеси аммиачной селитры с другими горючими материалами и веществами (дизель, аквонал, астролит и т. д.).

Кроме того, аммиачная селитра активно используется в качестве удобрения, однако при хранении и транспортировке следует помнить о взрывоопасном потенциале вещества.

Бездымный порох

В 1884 году французский химик Поль Вьель изобрел бездымный порох из нитроцеллюлозы с добавлением нитроглицерина. У черного пороха при горении образуются сульфиды и дисульфиды калия — они гигроскопичны и взаимодействуют с влагой воздуха, переходя в гидроксиды и сероводород. Вот почему и запах от черного пороха, как от несвежих яиц.

Также образуется немного недогоревшего нитрита калия, что и приводит к появлению дыма. У бездымного пороха при сгорании выделяется только углекислый газ, поэтому дыма почти нет.

Бездымный порох дал зеленый свет развитию многих видов современного полуавтоматического и автоматического оружия: при его сгорании образуется крайне мало побочных твердых продуктов, поэтому можно легко перезаряжать оружие, состоящее из множества подвижных секторов.

Источник: https://www.PopMech.ru/weapon/505972-istoriya-v-trotilovom-ekvivalente-evolyuciya-vzryvchatki/

Взрывчатый состав для изготовления детонирующих шнуров и капсюлей детонаторов

Изобретение относится к технологии взрывчатых веществ (ВВ) и композиций на их основе для изготовления детонирующих шнуров и капсюлей детонаторов.

Существуют различные способы гранулирования ВВ: либо с помощью полимерного связующего, либо с помощью легкоплавкого ВВ. Наиболее близким аналогом заявленного изобретения является взрывчатый состав для детонирующих шнуров, содержащий 80-95 мас.

% ВВ с высокой температурой плавления (высокодисперсный гексоген или октоген, или тэн) с кислотностью 0,05-0,7 мас.% (по H2SO4) и 5-20 мас.% ВВ с низкой температурой плавления (тротил), и дополнительно 0,1-1,5 мас.

% нейтрализующих кислоту веществ — оксид металла, например оксид железа (Fe2O3), или оксид магния (MgO), или карбонат металла, например карбонат кальция (СаСО3) или карбонат магния (MgCO3).

Недостатком этого состава является то, что гранулирующие добавки снижают восприимчивость составов к инициирующему импульсу, что может приводить к отказам детонирующего шнура (ДТП) в соединительных узлах, а также то, что использование его в капсюлях детонаторах связано с некоторыми сложностями.

Читайте также:  Самолет ил-114 300: технические характеристики, последние модификации

Другим недостатком известного состава является то, что его реализация требует наличия специализированного оборудования и производства не свойственного заводам, производящим средства инициирования. В случае же использования гексогена из Госрезерва транспортировка его на предприятия, имеющие гранулирующее оборудование, и затем на предприятия, изготавливающие детонирующие шнуры и капсюли детонаторы, будет опасна и дорога.

Задачей предлагаемого технического решения является обеспечение стабильности сыпучести состава.

Эта задача решена во взрывчатом составе для изготовления детонирующих шнуров и капсюлей детонаторов, содержащем гексоген, 10-40% крупнокристаллического взрывчатого вещества — перекристаллизованного гексогена или тетранитратпентаэритрита (ТЭНа) или гранулированного взрывчатого вещества — гексогена, цементированного полимерными или восковыми добавками, или сыпучего состава тротил/гексоген или сыпучего тетранитратпентаэритрита (ТЭНа), или пентолита со средним размером частиц 300-700 мкм и 0,3-3,0% высокодисперсного окисла металла. Добавка указанных крупнокристаллических или гранулированных ВВ позволяет стабилизировать сыпучесть состава и одновременно фиксировать сердцевину в ДШ. Добавка этих ВВ в количестве менее 10% экономически нецелесообразна, поскольку эти ВВ существенно дороже чистого гексогена.

Предпочтительно в качестве крупнокристаллических ВВ могут быть использованы перекристаллизованный гексоген марки “К” со средним размером 600-700 мкм или ТЭН со средним размером частиц 350-500 мкм.

Предпочтительно в качестве гранулированных ВВ могут быть использованы гексоген, цементированный полимерными или восковыми добавками со средним размером 300-500 мкм, или сыпучий состав тротил/гексоген — 5/95 со средним размером частиц 300-500 мкм, или ТЭН сыпучий высокодисперсный со средним размером частиц 500-700 мкм, или пентолит 10/90 со средним размером частиц 400-700 мкм.

Предлагаемые составы опробованы при изготовлении детонирующих шнуров и в штатных капсюлях детонаторов.

Пример 1. Гексоген из Госрезерва смешивали с 0,5% аэросила марки А-700, а затем полученную смесь смешивали с гексогеном марки “К” со средним размером частиц 650 мкм в различных соотношениях.

Из полученного состава изготавливали экструзионный детонирующий шнур с навеской 18-20 г/м. Отрезок шнура 100 м нарезали на отрезки по 10 м и от каждого конца этого отрезка брали пробу 1 м для определения навески.

Затем рассчитывали среднюю навеску состава на один метр и среднеквадратичное отклонение навески. Результаты приведены в таблице 1.

Таблица 1Влияние содержания в составе гексогена марки “К” на стабильность навески ВВ в ДШЭ.
№ п/п Содержание гексогена марки “К” в составе, % Средняя навеска ВВ в ДШЭ, г/м σ, г/м
1 19,2 2,5
2 5 19,5 2,4
3 10 19,6 1,1
4 15 19,3 0,9
5 20 18,7 1,0
6 30 18,9 1,1

Как видно из таблицы, при содержании в составе крупного гексогена 10% и более однородность распределения состава в ДШЭ возрастает более чем вдвое.

Пример 2.

Гексоген из Госрезерва смешивали с 1% пигментной окиси железа. Полученную смесь смешивали с цементированным гексогеном в различном соотношении.

Цементированный гексоген содержал 1,5% гранулирующей добавки — поливинилацетата и имел средний размер частиц 340 мкм. Полученные варианты состава использовали для наполнения экструзионного ДШ с навеской 18-20 г/м.

Стабильность навески определяли по методике, описанной в примере 1. Результаты исследований приведены в таблице 2.

Таблица 2.Влияние содержания добавки цементированного гексогена на стабильность навески ВВ в ДШЭ.
№ п/п Содержание цементированного гексогена в составе, % Средняя навеска ВВ в ДШЭ, г/м σ, г/м
1 18,5 2,9
2 5 19,1 2,7
3 10 18,7 1,3
4 15 19,7 1,2
5 20 18,9 1,1
6 40 19,3 1,1
  • Как видно из таблицы, добавки цементированного гексогена в количестве более 10% существенно снижают среднеквадратичное отклонение навески ВВ в ДШЭ.
  • Пример 3.
  • Гексоген из Госрезерва смешивали с 0,7% окиси цинка.

Полученную смесь смешивали с крупнокристаллическим ТЭНом со средним размером частиц 410 мкм.

Полученные варианты состава использовали для наполнения экструзионных детонирующих шнуров ДШЭ со средней навеской ВВ на один погонный мер 14-16 г.

Оценивали стабильность навески в ДШЭ по методике, аналогичной примеру 1. Дополнительно оценивали надежность ДШЭ по количеству отказов в узлах (из 10 опытов).

Результаты исследований приведены в таблице 3.

Таблица 3Влияние содержания добавки крупнокристаллического ТЭНа на стабильность навески ВВ в ДШЭ и его надежность.
№ п/п Содержание крупнокристаллического гексогена в составе, % Средняя навеска ВВ в ДШЭ, г/м σ, г/м Количество отказов в узлах
1 15,2 3,3 4
2 5 14,8 3,0 2
3 10 15,1 1,2
4 15 14,7 1,2
5 20 14,5 1,1
6 40 15.3 1,0

Как видно из таблицы, при содержании в составе крупнокристаллического ТЭНа более 10% стабильность навески ДШЭ возрастает и увеличивается надежность срабатывания ДШЭ в узлах.

Пример 4. Гексоген из Госрезерва смешивали с 1% Fe2О3 (удельная поверхность 0,6 м2/г). Исходную композицию и ее смеси с ТЭНом и “цементированным” гексогеном применяли для снаряжения электродетонаторов (ЭД). Масса основного заряда электродетонатора — 1 г. Электродетонаторы испытывали на безотказность и полноту срабатывния. Результаты испытаний приведены в Таблице 4.

Гексоген: формула, как выглядит, аналог, из чего делают

Взрывчатый состав для изготовления детонирующих шнуров и капсюлей детонаторов, содержащий гексоген и окисел металла, отличающийся тем, что он дополнительно содержит 10-40% крупнокристаллического взрывчатого вещества — перекристаллизованного гексогена или тетранитратпентаэритрита или гранулированного взрывчатого вещества — гексогена, цементированного полимерными или восковыми добавками, или сыпучего состава тротил/гексоген, или сыпучего тетранитратпентаэритрита, или пентолита со средним размером частиц 300-700 мкм, а в качестве окисла металла он содержит высокодисперсный окисел металла в количестве 0,3-3,0%.

Источник: https://findpatent.ru/patent/225/2257367.html

Гексоген

Гексоге́н (циклотриметилентринитрамин[2], RDX, T4) —
(CH2)3N3(NO2)3, мощное вторичное (бризантное) взрывчатое вещество. Чувствительность к удару занимает среднее положение между тетрилом и тэном.

Плотность заряда — 1,77 г/см³. Скорость детонации — 8640 м/с, давление во фронте ударной волны — 33,7 ГПа, фугасность — 470 мл, бризантность — 24 мм по Гессу, 4,1-4,8 по Касту, объём газообразных продуктов взрыва — 908 л/кг. Температура вспышки — 230 °C, температура плавления — 204,1 °C. Теплота взрыва — 5,45 МДж/кг, теплота сгорания — 2307 ккал/кг.[3].

Гексоген — белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес — 1,816 г/см³, молярная масса — 222,12 г/моль. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше — в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

Плавится гексоген при температуре 204,1 °C с разложением, при этом его чувствительность к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Прессуется плохо, поэтому, чтобы его лучше спрессовать, гексоген флегматизируют в ацетоне.

Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты.

В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин.

Однако, в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой [источник?][4] яд.

Лишь в 1920 году Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

Метод Герца (1920) заключается в непосредственном нитровании гексаметилентетрамина (уротропина, (CH2)6N4) концентрированной азотной кислотой (HNO3):

( C H 2 ) 6 N 4 + 3 H N O 3 ⟶   ( C H 2 ) 3 N 3 ( N O 2 ) 3 + 3 H C O H + N H 3 {displaystyle {mathsf {(CH_{2})_{6}N_{4}+3HNO_{3}longrightarrow (CH_{2})_{3}N_{3}(NO_{2})_{3}+3HCOH+NH_{3}}}}

Производство гексогена по этому методу велось в Германии, Англии и других странах на установках непрерывного действия. Метод имеет ряд недостатков, главные из которых:

  • малый выход гексогена по отношению к сырью (35-40 %);
  • большой расход азотной кислоты.

В середине XX века был разработан ряд промышленных методов производства гексогена.

  • Метод «К». Разработан в Германии Кноффлером. Метод позволяет повысить выход гексогена по сравнению с методом Герца за счёт добавления в азотную кислоту нитрата аммония (аммиачной селитры), который взаимодействует с побочным продуктом нитрования — формальдегидом.
  • Метод «КА». По методу «КА» гексоген получается в присутствии уксусного ангидрида. В жидкий уксусный ангидрид дозируется динитрат уротропина и раствор аммиачной селитры в азотной кислоте.
  • Метод «Е». Ещё один уксусноангидридный метод, по которому гексоген получается взаимодействием пара-формальдегида с амиачной селитрой в среде уксусного ангидрида.
  • Метод «W». Разработан в 1934 Вольфрамом. По этому методу формальдегид при взаимодействии с калиевой солью сульфаминовой кислоты даёт так называемую «белую соль», которая при обработке серно-азотной кислотной смесью образует гексоген. Выход по этому методу достигает 80 % по сырью.
  • Метод Бахмана-Росса. Разработан в США. Метод близок к методу «КА», но за счет применения двух растворов — уротропина в уксусной кислоте и аммиачной селитры в азотной кислоте процесс значительно более технологичен и удобен: ( C H 2 ) 6 N 4 + 3 C H 3 C O O H + 4 H N O 3 + 2 N H 4 N O 3 + 6 ( C H 3 C O ) 2 O ⟶   15 C H 3 C O O H + 2 C 3 H 6 N 6 O 6 {displaystyle {mathsf {{mathsf {(}}CH_{2})_{6}N_{4}+3CH_{3}COOH+4HNO_{3}+2NH_{4}NO_{3}+6(CH_{3}CO)_{2}Olongrightarrow 15CH_{3}COOH+2C_{3}H_{6}N_{6}O_{6}}}}

Применяют для изготовления детонаторов (в том числе детонационных шнуров) снаряжения боеприпасов и для взрывных работ в промышленности, как правило, в смеси с другими веществами (тротилом и т. п.

), а также, с добавкой флегматизаторов (парафина, воска, церезина), уменьшающих опасность взрыва гексогена от случайных причин.

Например, широко известная С-4 — это 91 % гексогена, 2,25 % полиизобутилена, 5,31 % диоктилсебацината и 1,44 % жидкой смазки.

Также может использоваться как компонент топлива в твердотопливных ракетных двигателях.

Источник: https://ruwikiorg.ru/wiki/RDX

Кислый запах ужаса — МК

Вчера ФСБ официально подтвердило: “Ту-154” под Ростовом взорвали гексогеном

Взрывотехники лишь мялись и опускали головы, когда к ним подходили с вопросами, а замгенпрокурора Сергей Фридинский, весь день проторчавший рядом с обломками, казалось, был больше озадачен поисками трупов.

Нам пришлось все выяснять неофициально. Так вот, тот кусок обгоревшей обшивки был найден среди груды металла хвостовой части самолета. Как раз в этом месте находится большое багажное отделение.

Взрывчатка же, думается, была заложена как раз в вещах. Она была небольшая — для локального взрыва, чтобы просто пробить обшивку.

На высоте это идеальный вариант теракта — самолет и люди погибают от разгерметизации.

Так, скорее всего, и было. К тому же теперь уже официально объявлено, что на обшивке нашли следы гексогена.

Читайте также:  Корабли проекта 21630: малые артиллерийские, буян, история создания, технические характеристики (ттх)

Пронести же на борт небольшое количество взрывчатки — дело нехитрое. Кусок пластита выглядит на “рентгенном” экране как обычное мыло — ну не вскрывать же теперь каждую сумку!

Что же представляет собой этот самый проклятый гексоген, который все чаще используют террористы?

Гексоген (циклотриметилентринитрамин) впервые синтезировал немецкий химик, сотрудник прусского военного ведомства Ленце. Но только в 1920 году Герц понял, что гексоген — еще и сильнейшая взрывчатка. По скорости детонации он опережал все известные взрывчатые вещества, а определить его бризантную (разрушительную) способность в то время оказалось вообще невозможно.

В наше время гексоген входит в состав многих боевых и промышленных взрывчаток. Например, аммонит скальный Ь1, предназначенный для дробления особо крепких пород, содержит 24% гексогена. Чистый гексоген — белое, как мел, вещество.

Характерные признаки: кисловатый, тяжелый, резкий запах, близкий к запаху большого количества сгоревшего в закрытом помещении пороха. Гексоген значительно чувствительнее тротила к удару и дороже его.

В Вооруженных силах гексоген почти не применяется — он не может храниться долго. В основном его используют в промышленности.

  • Для направленного взрыва в самолете достаточно 300—700 г гексогена.
  • Гексоген
  • Энергия взрывчатого превращения — 1290 ккал/кг
  • Скорость детонации — 8380 м/с
  • Фугасность (сила взрывной волны) — 490 куб. см
  • Бризантность (разрушительная способность) — 24 мм
  1. Тротил
  2. Энергия взрывчатого превращения — 1010 ккал/кг
  3. Скорость детонации — 6900 м/с
  4. Фугасность — 285 куб. см
  5. Бризантность — 19 мм
  • Пластит
  • Энергия взрывчатого превращения — 910 ккал/кг
  • Скорость детонации — 7000 м/с
  • Фугасность — 280 куб. см
  • Бризантность — 21 мм

ГДЕ ПРИМЕНЯЛСЯ ГЕКСОГЕН?

Самый известный случай — взрывы жилых домов в Буйнакске в августе 1999 г., а также в Москве и Волгодонске в сентябре 1999 г.

9 мая 2002 г. — взрыв во время парада в Каспийске. Была использована осколочная противопехотная мина МОН-90 с взрывчатой смесью из тротила и гексогена массой около 2 кг в тротиловом эквиваленте.

9 июля 2003 г. — при взрыве самодельного взрывного устройства на основе гексогена массой в 1,1 кг на 1-й Тверской-Ямской улице в Москве погиб эксперт-взрывотехник ФСБ Георгий Трофимов, пытавшийся обезвредить изъятое у террористки Заремы Мужахоевой взрывное устройство.

Источник: https://www.mk.ru/social/article/2004/08/28/105875-kislyiy-zapah-uzhasa.html

Бризантные (дробящие=обычные) ВВ. Удельная энергия, температура вспышки, взрыва, скорость детонации и т.д. Тротил, гексоген, Тэн, тетрил, ТГ-50, ТГ-40, МС, ТГА-16, ПВВ4, ПВВ5А, ПВВ7, ПВВ12с, А- IХ-1 и 2, ЭВВ-11, ВС-6Д, ТМ, Гекфол-5 (А- IX-10)

По внешнему виду тротил представляет собой светло-желтое и в зависимости от технологии кристаллическое, чешуйчатое или гранулированное вещество. Кристаллы существуют в моноклинной и орторомбической формах. Тротил получается нитрацией толуола смесью азотной и серной кислот.

Температура плавления очищенного продукта> 80,6 °С. При наличии примесей, в основном асимметричных тринитротолуолов, температура плавления снижается до 75 — 77 °С.

Примеси образуют с тротилом многокомпонентные эвтектические сплавы, имеющие маслообразный вид, вследствие чего их называют тротиловым маслом.

Плотность монокристалла тротила 1,663 г/см3, гравиметрическая плотность 0,5 — 0,85 г/см3.

Гигроскопичность около 0,05 %, растворимость в воде низкая — 0,15 % при 100 °С, что является благоприятным свойством.

Тротил токсичен, предельно допустимая концентрация 0,001 мг/л, он поражает дыхательные пути, пищеварительный тракт. При длительном воздействии вызывает слабость, головокружение, дерматиты кожи, гепатит.

Очищенный тротил представляет собой физически и химически стойкое вещество, достаточно безопасное в обращении. Чувствительность к трению 300 МПа, с кварцевым песком — 190 МПа.

Ударно-волновая чувствительность 0,7 ГПа. Температура вспышки 290 °С, температура взрыва — 2820 °С.

Восприимчивость к детонации удовлетворительная: предельный инициирующий заряд азида свинца 0,1 г, гремучей ртути — 0,38 г.

Термостойкость тротила 215 °С. Эту температуру выдерживает тротил в течение 4 часов 40 минут, а температуру 225 °С — соответственно 2 часов 30 минут.

  • Объем продуктов взрыва 0,75 — 0,87м3/кг.
  • Скорость детонации при плотности (ρ0) составляет:
  • ρ0= 1,55 г/см3 — 6200 м/с; ρ0= 1,60 г/см3 — 6900-7000 м/с;
  • ρ0= 1,62 г/см3 — 6800-7000 м/с;
  • Гарантийный срок хранения в складских условиях — десятки лет.
  • Объем продуктов взрыва — 0,75 — 0,87 м3 /кг.

Критический диаметр детонации (Dкр) порошкообразного тротила составляет 8 — 10 мм, при увеличении температуры до 81°С Dкр = 62 мм, а при температуре 240°С Dкр = 6 мм. С увеличением плотности детонационная способность увеличивается, а чувствительность к детонации снижается. Удельная энергия сгорания — 3,4 МДж/кг.

Тротил в чистом виде или в смеси с гексогеном (смеси ТГ) широко применяется в различных инженерных боеприпасах.

Источник: https://dpva.ru/guide/guidechemistry/burningandexolisions/explosivesbrisnatovw/

Три популярные взрывчатки: не пытайтесь повторить это дома

В 1847 году итальянский химик Асканио Собреро синтезировал жидкость, позволявшую «левитировать» тяжёлые предметы. В миру она получила название «нитроглицерин». Но Собреро и не подозревал, какие серьёзные последствия его открытие будет иметь для всего мира.

Полученная жидкость взрывалась практически от всего: от нагрева, удара или трения. Неправильное хранение тоже приводило к взрыву.

После синтеза вещество лучше было сразу пускать в дело. А дел было много. На повестке дня стояло промышленное развитие: человечеству требовались руда, тоннели, дороги, котлованы, так что волшебная жидкость пришлась очень к месту. И как было бы замечательно, если бы так всё и осталось, — но увы, увы…

Альфред Нобель

По легенде, однажды, когда Альфред Нобель перевозил нитроглицерин, некоторое его количество вылилось из бутылки и впиталось в землю — ею, за неимением пупырчатой плёнки, обкладывали бутылки в телеге.

Поэкспериментировав с полученной грязью, знаменитый изобретатель и филантроп обнаружил, что по мощности взрыва получившаяся смесь практически не уступает нитроглицерину, и при этом её можно хранить, кидать, резать, перевозить — да хоть горшки лепить, лишь бы в печь не сажать.

Сам Нобель эту байку яростно отрицал — дескать, чтобы у меня, да что-то пролилось!

Если бы он так небрежно относился к нитроглицерину, то вместо премии Нобеля у нас сейчас была бы исключительно премия Дарвина.

Но невозможно вытравить из народного сознания то, что имеет глубокую психологическую основу — страх.

Нобель был успешным предпринимателем, наладившим в Швеции, а затем и за рубежом производство нитроглицерина. Его заказчиками становились как правительства, так и частные лица. Но успешным он оказался только касательно доходов. А вот по части инцидентов удачливым его не назовешь…

Взрыв в лаборатории Нобеля в Стокгольме

У Альфреда взрывалось всё: заводы, корабли, лаборатории. Во время одного из взрывов погиб его младший брат. Люди боялись внеплановых детонаций, государства издавали законы о запрете производства нитроглицерина на своей территории.

Поэтому в сознании обывателя Нобель был кем-то вроде Бафомета — страшного сатанинского идола.

Впрочем, сам изобретатель настаивал, что целенаправленно экспериментировал с 1864 года с пропиткой разнообразных веществ нитроглицерином. В качестве одного из них использовалась кремнистая земля — кизельгур, и это был успех. Так путём долгого труда в 1866 году Альфред Нобель изобрёл динамит.

Принцип самой знаменитой на планете взрывчатки прост: берём вещество-поглотитель, пропитываем его нитроглицерином, вставляем капсюль — и вуаля.

Изобретение приняли на ура. Одним из его вариантов стали так называемые желатин-динамиты, более известные как «гремучие студни». Благодаря тому, что синтезировать нитроглицерин и нитроцеллюлозу было сравнительно несложно, русские революционеры-народники стали активно использовать это сочетание для производства своих бомб — химиками они были хорошими.

Так, гремучим студнем собственного производства товарищ Кибальчич отправил к праотцам императора Александра II (чем на практике продемонстрировал невозможность уничтожить монархию путём убийства монархов).

Последнее покушение на Александра II 1 марта 1881 года

Но всё это уже давняя история.

Тротил

Пока Нобель возился с детонаторами и поглотителями, в 1863 году химик Вильбранд в Германии синтезировал то, что ни один человек, будучи навеселе, не выговорит: тринитротолуол. Может быть, поэтому у него хватает альтернативных названий: тротил, TNT, тол.

Он был мощнее тогдашних пороховых смесей и слабее нитроглицерина, однако, в отличие от последнего, не взрывался от любой встряски. В то же время производить его на коленке оказалось очень непросто. Причём настолько, что отлаженный способ промышленного производства для нужд армии и флота придумали в Германии только в 1891 году.

На первый взгляд, тротиловая смесь выглядит вполне безобидно (источник фото)

Зато преимуществ у новой взрывчатки из тринитротолуола было просто море. Она легко плавилась, но не взрывалась, поэтому тол можно было безопасно заливать в снаряды в качестве боевого вещества. На его базе разработали большое количество взрывчатых веществ, которые активно применялись и на полях сражений, и во взрывном деле.

Одним из таких производных стал аммонал. В быту он показал себя лучше динамита и широко использовался — в частности, при строительстве каналов в сталинском СССР, сокращая усилия по маханию кайлом и лопатой.

Солдат инженерных войск США готовится взрывать брошенный немецкий танк (источник фото)

При этом на войне его применяли весьма ограниченно: аммонал годился для мин и гранат, но не подходил для снарядов, поскольку взрывался при выстреле орудия.

Но в целом на войне тринитротолуол и взрывчатые вещества на его основе зарекомендовали себя весьма впечатляюще. На протяжении ХХ века снаряды и бомбы, снаряжённые им и его апгрейдами, активно сыпались на голову человечества, знаменуя торжество прогресса.

К концу ХХ века тол стал самым массовым взрывчатым веществом.

Пластит

в 1890-х годах немецкие военные впервые синтезировали гексоген. Но официально считается, что его открыл в 1898 году немецкий химик Геннинг.

Поначалу гексоген пытались использовать в качестве лекарства, поскольку его химическая формула похожа на уротропин — препарат, который используют до сих пор.

Комочек гексогена

Только через 20 лет выяснилось, что это мощнейшее взрывчатое вещество. С 1920 года его начали производить для военных целей.

Сейчас гексоген ассоциируется главным образом с исламскими террористами, но на самом деле его активно использовали уже во Второй мировой войне.

К примеру, смесь гексогена с тринитротолуолом и алюминиевой пудрой получила название «Торпекс». Ей начиняли так называемые «прыгающие бомбы» Барнса Уоллеса, сброшенные с самолетов на дамбы в долине реки Эдер и Мёне в 1943 году.

Бомбы, как «блинчики», скакали по воде, чтобы приблизиться к плотине, защищённой сетями.

В результате операции, получившей название «Порка», долину Рура затопило.

Пластит — так именуются пластичные взрывчатые вещества — соотносится с гексогеном примерно так же, как динамит с нитроглицерином. Гексоген входит в пластичную взрывчатку в качестве основы. Гибкость пластификатора позволяет без проблем лепить из него шарики, куличики, запихивать в щели, окружать им опоры, устраивать направленные взрывы и всё такое.

Здесь просто обязан был быть взрыв

Пластит дороже в производстве, чем гексоген, зато гораздо удобнее в применении. В мире существует масса разновидностей пластической взрывчатки — в частности, знаменитая американская C-4.

Читайте также:  Ми-28: ударный вертолет, ночной охотник, технические характеристики (ттх), вооружение, грузоподъёмность

В настоящее время это самая популярная взрывчатка — однако сложно сказать, надолго ли. Ведь прогресс не стоит на месте. Каждый год синтезируется новое взрывчатое вещество — более мощное, более надёжное и более разрушительное. Человечество жаждет, чтобы было как можно «круче» и «страшнее».

Но к чему это в итоге приведёт?

Источник: https://warhead.su/2018/03/29/tri-populyarnye-vzryvchatki-ne-pytaytes-povtorit-eto-doma

ПОИСК

    Формальдегид используется в производстве синтетических смол (наприм вр, фенопластов и аминопластов), искусственной роговины (для получения казеина) и ряда других органических соединений. При реакции формальдегида с аммиаком образуется гексаметилентетрамин (уротропин), из которого получают взрывчатое вещество гексоген.

Благодаря своему дезинфицирующему действию гексаметилентетрамин применяется в медицине он используется также вместо токсичного метальдегида (см. ниже) в качестве твердого топлива для туристских плиток и как ускоритель вулканизации каучука. [c.

267]     Основным потребителем формальдегида является промышленность пластмасс, куда идет 70—75% от всего расходуемого формальдегида.

Кроме того, из формальдегида изготовляются основы для маслорастворимых лаков, клеи для фанеры, ионообменные смолы для водоочистки, синтетические дубители, дивинил и изопрен (сырье для синтетических каучуков), многоатомные спирты (заменители глицерина) и непредельные альдегиды, являющиеся в значительной степени тоже сырьем для производства высокомолекулярных соединений.

На основе формальдегида производятся взрывчатые вещества (циклонит или КОХ в США и гексоген в Европе), красители, медикаменты. В сельском хозяйстве формалин применяется для протравливания семян перед посевом. Более подробно о применении формальдегида см. [141]. [c.303]

    Уротропин используют в медицине как мочегонное средство и для производства мошных взрывчатых веществ (гексоген)  [c.459]

    Производство гексогена. Гексоген может быть получен двумя способами 1) в две фазы — через динитрат гексаметилентетрамина и 2) в одну фазу — непосредственным нитрованием гексаметилен- тетрамина. [c.395]

    Продукты конденсации альдегидов с аммиаком или первичными аминами, прежде всего гексаметилентетрамин, имеют большое техническое значение в качестве ускорителей вулканизации и в производстве фенолформаль-дегидных смол (см. разд. Г,5.1.8.4). Уротропин применяется также для синтеза бризантных взрывчатых веществ (гексоген, октоген).

Важное значение имеют также пластмассы (аминопласты), получаемые взаимодействием формальдегида с мочевиной или меламином [схема (Г.7.16)[.

Сначала образуются так называемые метилольные соединения (например, метилолмочевина I), из них получаются цепные полимеры П1, которые с новыми молекулами формальдегида дают трехмерные макромолекулы V, например  [c.70]

    Особенно большое внимание уделено развитию промышленности этих веществ в странах, не обеспеченных в достаточной мере собственными источниками сырья для производства ВВ на базе ароматических соединений. Например, в Италии гексоген и тэн начали изготовлять в промышленном масштабе уже в 1932—1933 гг.

и использовали для снаряжения боеприпасов не только в чистом или флегматизированном виде, но и в смеси с аммиачной селитрой. В Германии гексоген широко применяли для снаряжения бронебойных и кумулятивных снарядов. Тэн и гексоген выпускали также во Франции, Чехословакии, Англии, Канаде, США. [c.

9]

    Полинитропроизводные аминов находят широкое применение в качестве бризантных взрывчатых веществ. К этому классу относятся тетрил, гексоген и октоген, широко используемые для изготовления детонаторов и капсюлей детонаторов, а также для снаряжения боеприпасов. Гексоген, например, является основным компонентом многих мощных взрывчатых смесей и по объему производства уступает только тротилу. [c.420]

    В феврале 1942 г. начал работать завод фирмы Дюпон , производящий гексоген комбинированным методом. В мае 1942 г. производство гексогена комбинированным методом было пущено на заводе фирмы Истмен .

На этом заводе процесс осуществлялся в аппаратуре непрерывного действия, а отработанная кислота регенерировалась в уксусный ангидрид и вновь использовалась в производстве гексогена, [c.

537]

    Гексоген в различных стадиях производства, хотя и содержит некоторое количество кислоты или воды, по-видимому, все же имеет высокую чувствительность к механическим воздействиям. Однако основным мероприятием по предупреждению пожаров и особенно взрывов в производстве гексогена является строгое соблюдение технологического режима. [c.540]

    Меламин в настоящее время производится промышленностью и применяется для производства пластических масс. Присутствие в меламине триазинового кольца, как в гексогене, и трех аминогрупп позволяет получать нитраты этого вещества, что ставит его в ряд взрывчатых нитраминов. [c.579]

    Реакция открыта А. М. Бутлеровым (1860 г.). Уротропин — кристаллическое вещество, т. пл. 230 °С. Используется в качестве лекарственного вещества и в больших количествах для производства полимеров. Действием азотной кислоты на уротропин получают гексоген — сильное взрывчатое вещество  [c.206]

    Гетероциклические соединения фуран, тетрагидрофуран, фурфурол, тиофен, индол, пиридин, пиперидин, пиразалан, пурин, пиридиновые и пуриновые основания, пиколины, никотиновая кислота, диоксаны, морфолин, гексоген, барбитураты их полупродукты и другие при производстве этих препаратов. [c.166]

    Главное преимущество тротила состоит в том, что являясь достаточно сильным бризантным взрывчатым веществом, он обладает сравнительно малой восприимчивостью к механическим воздействиям, это позволяет применять его для снаряжения всех видов боеприпасов, в том числе и бронебойных снарядов. Для производства тротила имеется бапьшая сырьевая база.

Благодаря высокой химической стойкости хи< чическне и взрывчатые свойства тротила сохраняются даже при длительном (десятки лет) хранении. Ограниченная же реакционная способность позволяет приготовлять на его основе ряд других взрывчатых веществ, напрнмер. различные смеси и сплавы с гексогеном, смеси с аммонийной селитрой.

Это улучшает баланс взрывчатых веществ — обстоя-тепьство исключительно важное в военное время. [c.81]

    Гексоген в различных стадиях производства хотя и содержит некоторое количество кислоты нлн воды, по-видимому, все же высоко чув-ствитслеи к механическим воздействиям. [c.286]

    Гексоген. Учитывая опыт мировой войны, государства, лишенные достаточных сырьевых ресурсов (каменного угля для производства ароматических углеводородов, жиров для производства глицерина и т. п.

) для производства взрывчатых веществ, стремятся изыскать такие взрывчатые вещества, для которых сырье может быть в неограниченных количествах изготовлено синтезом из легко доступных веществ угля, воздуха и воды.

Среди ряда веществ, изучавшихся под зтим углом зрения, большой интерес наряду с азотным эфиром пентазритрита представляет циклотриметилентринитроамин или гексоген. [c.419]

    Полученный впервые А М Бутлеровым уротропин руктура подобна структуре адамантана) находит широкое 1менение в производстве фенолформальдегидных смол, качестве твердого горючего ( сухой спирт ), диуретика, этивоподагрического и противоревматического средства работкой уротропина концентрированной НЫОз получа-взрывчатое вещество — циклонит (гексоген) Формальдегид применяют как дезинфицирующее, кон-)вирующее средство, для дубления кожи В качестве примера использования формальдегида интезе лекарственных веществ приведем получение из-тных жаропонижающих и болеутоляющих средств — гпъгина и пирамидона амидопирина) [c.613]

    Для производства тротила имеется большая сырьевая база — ароматический углеводород толуол и синтетические азотная и серная кислоты. Благодаря высокой химической стойкости химические и взрывчатые свойства тротила сохраняются даже при длительном (десятки лет) хранении.

Ограниченная же реакционная способность позволяет приготовлять на его основе ряд других взрывчатых веществ, например различные смеси и сплавы с гексогеном, смеси с аммиачной селитрой. Это улучшает баланс взрьшчатых веществ — обстоятельство исключительно важное в военное время. [c.

153]

    Гексоген характеризуется высокой бризантностью и стойкостью. Технология его производства сравнительно проста, а сырьевая база практически неограничена, так как исходное сырье — уротропин и азотная кислота — в конечном счете получают из природного или попутного газа, воздуха и воды. Ниже показана схема получения гексогена из воздуха, воды и газа  [c.500]

    В Англии [4, 40, 49] разработка метода производства гексогена началась в 1932 г., а в 1933 г. уже работала установка, производившая 34 кг гексогена в час без регенерации отработанной кислоты. К концу 1939 г. была осуществлена регенерация отходов азотной кислоты абсорбцией окислов азота с концентрированной отработанной кислотой.

Это позволило возвращать в цикл 5,5 т азотной кислоты на 1 т готового продукта. В 1941 г. начал работать завод, выпускавший 180 т гексогена. Получали гексоген прямым нитролизом уротропина концентрированной азотной кислотой или так называемым окислительным методом. К 1942 г. был разработан уксусноангидридный метод, экономически наиболее выгодный.

[c.527]

    В США и Канаде гексоген получали теми же методами, что и в Англии, производство же его было осуществлено значительно позже первый завод, пущенный летом 1941 г., работал по технологии, заимствованной в Англии [52].

Одновременно в США, Англии и Канаде проводились совместные исследования и разработка технологии получения гексогена уксусноангидридным методом [52]. В феврале 1942 г. был пущен олытный завод по производству гексогена уксусноангидридным методом в аппаратуре непрерывного действия, а позднее (1943 г.

) начал работать завод, на котором отработанная кислота полностью регенерировалась. [c.527]

    Гексаметилентетрамин образует кристаллы, легко растворимые в воде, которые при нагревании разлагаются без плавления. Он при меняется в качестве лекарства под названием уротропин, а также в производстве бакелита. При нитровании гексаметилентетрамина получается циклотриметилентринитрамид, или гексоген, — сильное взрывчатое вещество [c.659]

    Концентрированная азотная кислота применяется в производстве взрывчатых веществ — для иитрования толуола, уротропина, диметиланилина, пентаэритрита, ксилола, нафталина (при этом получаются соответственно тротил, гексоген, тетрил, тэн, ксилил, динитронафталин), а также используется в производстве нитратов целлюлозы, нитроглицерина, гремучей ртути. В качестве взрывчатых веществ находят значительное применение аммониты — смеси аммиачной селитры с нитропроизводными ароматических соединений. [c.10]

    Несмотря на то что запас энергии гексогена выше чем у пентрита, примесь его в динамитах не дает того же ускорения, как пентринит (рис. 36 и 37) из-за несколько меньшей скорости детонации. То же самое имеет место и для сплавленных смесей с 50% тринитротолуола (рис. 108 и 109), так что военное применение гексогена вместо пентрита оказывается невыгодным.

Гексоген, исходный продукт для производства которого получается из формальдегида и аммиака, более прост и универсален, чем пентаэритрит, был бы в некотором отношении взрывчатым веществом будущего, если бы получение гексогена протекало без промежуточного образования соли азотной кислоты и если бы благодаря этому нитрация не давала столь незначительных вы- [c.

267]

Источник: https://www.chem21.info/info/276665/

Ссылка на основную публикацию
Adblock
detector